

American Institute of Aeronautics and Astronautics

1

Specification and Design of Electrical Flight System
Architectures with SysML

Mark L. McKelvin, Jr.1 and Alejandro Jimenez2
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109

Modern space flight systems are required to perform more complex functions than
previous generations to support space missions. This demand is driving the trend to deploy
more electronics to realize system functionality. The traditional approach for the
specification, design, and deployment of electrical system architectures in space flight
systems includes the use of informal definitions and descriptions that are often embedded
within loosely coupled but highly interdependent design documents. Traditional methods
become inefficient to cope with increasing system complexity, evolving requirements, and the
ability to meet project budget and time constraints. Thus, there is a need for more rigorous
methods to capture the relevant information about the electrical system architecture as the
design evolves. In this work, we propose a model-centric approach to support the
specification and design of electrical flight system architectures using the System Modeling
Language (SysML). In our approach, we develop a domain specific language for specifying
electrical system architectures, and we propose a design flow for the specification and design
of electrical interfaces. Our approach is applied to a practical flight system.

I. Introduction
ODERN space flight systems are typically composed of several subsystems that perform distinct tasks to
support higher-level system objectives. Subsystems are developed by functionally and geographically

distributed design teams. Moreover, due to the rapid increase in electronic functionality, interactions between
subsystems and the amount of design information that must be managed by electrical system engineering teams is
increasing. Thus, capturing a holistic view of the system under development becomes a challenge to system
engineers, and in particular, to the process of electrical system development and integration.
 The traditional approach to the design of electrical system architectures is characterized by an iterative process
that captures baseline design decisions in a set of loosely coupled design documents. Designers capture and modify
design information in a collection of documents as the spacecraft design progresses. The design information that is
captured often overlaps within these documents, and they are maintained separately without an explicit reference to
a central data repository. For example, some specifications of the electrical system requirements are generally
captured as a set of high-level block diagrams that are used to capture the interconnectivity between subsystems at
different points in the design process. These diagrams may be used to capture the types of data and power flows
between subsystems of the spacecraft. Each diagram is created independently with no explicit means of traceability.
This process poses a challenge to electrical system engineers because it leads to ambiguous specifications.

Over the years, the complexity of system management has influenced the use of models as a way to manage the
system engineering process1,2,3. In general, a model is an abstract representation of a physical phenomenon. For
years, the model of a system was embedded within the knowledge of the system engineer. This model is referred to
as the mental model. However, to cope with increasing complexity of systems, system engineering progressed from
mental models to the use of computer-based tools, along with a set of methods, processes, and tools that are referred
to as model-based system engineering (MBSE)4.

MBSE is a widely used approach to system engineering; however, the use of a MBSE approach to system
engineering does not necessarily mean that the focus is on the model of a system. This brings up the issue of
centricity as described by Harvey et. al.5. MBSE may be classified by two general approaches, document-centric and
model-centric. A document-centric approach describes the predominant state of practice where specification and
design documents are exchanged between stakeholders, such as subsystem designers, system engineers, customers,

1 Software Systems Engineer, System Architecture and Behaviors Group, M/S 301-490.
2 Technical Group Supervisor, Electrical System Engineering, M/S 301-490.

M

American Institute of Aeronautics and Astronautics

2

and manufacturers. Documents could be in a hard-copy or electronic format, such as a memorandum, word
processor, diagrams, or electronic mail. Furthermore, these documents are subject to examination and review for
their rigor and appropriateness through a series of formalized meetings. Although documents are useful way to
communicate with stakeholders, and in some cases required, there are limitations.

One of the limitations of a document-centric approach is ensuring tracebability to the origin of design
information. The relationships may be articulated in the form of cross-references, notes, and figures, just to name a
few. Any information that is not expressed in the documents is captured in mental models by the engineers. Hence,
traceability is only as good as the expressiveness of the relationships that are explicitly defined in the documents. In
addition, the information that is stored in the model, including figures and diagrams, are static. Consequently, related
information appears in multiple documents, databases, and possibly multiple places within the same document.
When the design information is updated, the designer needs to identify and modify any related documents. Since the
information is captured in numerous documents, even for a mildly complicated system, this can result in a time-
consuming change process that becomes a major source of ambiguity, error, and inconsistency of information6.

In contrast to a document-centric approach, a model-centric approach uses well-defined models of the system for
capturing technical design information. A key distinction in the two approaches is that a document-centric approach
focuses on producing reports of a system. The reports collectively define the system architecture, whereas the
model-centric approach is a representation of the system in a mathematical formalism. In a model-centric approach,
a model is created as a representation of the system to varying degrees of fidelity. The model is the central artifact
from which other artifacts, including documents, reports, diagrams, and tables are created or generated
automatically. This approach enhances traceability, consistency, and the ability to be validated by checking model
completeness and correctness. Moreover, it is worth noting that a document-centric approach may be taken with
some MBSE tools, but even with a MBSE tool, the document-centric approach does not necessarily guarantee
traceability nor does it ensure that the focus is on the system model.

II. Problem Statement
The traditional process of designing and deploying electrical system architectures utilizes a document-centric

approach. However, as the complexity of the interconnectivity between electronics in space flight systems increase,
the traditional document-centric approach becomes inefficient to cope with design changes, information sharing, and
consistent integration of design information across various design and test processes in the end-to-end electrical
system engineering process. The traditional approach to the design of electrical system architectures relies on
capturing key points in the design by the use of static documents and diagrams. This approach can no longer be
sustained as the pressures to deliver a flight system on time and within budget while fulfilling system requirements
increase concurrently with system complexity. As a consequence, the designer focuses more on document creation
as opposed to system design. This is in part due to a lack of rigorous, system-level design methodologies and tool
support.

To address the aforementioned problems, a model-centric approach is applied to the design of electrical system
architectures within a MBSE framework using the System Modeling Language (SysML)7. The modeling approach
consists of establishing a modeling foundation through the use of metamodeling techniques to create a domain
specific language for specifying electrical system architectures within a model-based environment. To support the
design of electrical system architectures, a design flow is proposed. Within the design flow, a set of abstraction
layers along with a set of common modeling elements that enable system composition in a stepwise refinement
process is described.

III. Related Work
 SysML has been used to model different aspects of systems in a variety of application domains including
electrical systems, such as dynamic modeling of aircraft power systems8. However, our work focuses primarily on
structural models that may be used for electrical system specification. For example, in Slomka et. al.10, the authors
focus on constructing models that combine the computational and physical aspects of an electrical system using a
layer-based design approach that is based on a systematic refinement process. In Shah et. al.11, the authors develop
an approach to maintaining traceability between multiple data sets. The authors also introduce an approach to the
integration of SysML and a commercial electronic automation design tool through the use of formal modeling and
transformation techniques..
 In contrast, we focus on the development of a domain specific environment for the specification of electrical
flight system architectures using SysML and for managing electrical system design information. To support
electrical system modeling, we develop a domain specific language that is anchored on top of a rigorous ontological

American Institute of Aeronautics and Astronautics

3

framework that enables formal analysis and the integration of design information across electrical flight system
development processes and tools. The focus of the models that may be constructed is on the interfaces of the
system’s electrical and electronic hardware. The approach to modeling also enables the integration of electrical
system models that are constructed within SysML with a commercial electrical computer aided design tool. In
addition, we introduce an approach to electrical system design that is based on a successive refinement of the design
through key levels of abstraction.

IV. Background
In this section, we provide a background of key technologies that are referenced and applied in this work. First,

modeling with SysML is introduced. Then, the key concepts of domain specific modeling, ontologies, and
metamodels are introduced. The domain of interest in this work targets the specification of electrical flight system
architectures.

A. The System Modeling Language (SysML)
SysML is a general-purpose graphical modeling language for system engineering. It is an extension of the

Unified Modeling Language (UML)12, a language that has been developed for software development. SysML is used
to specify, analyze, design, and verify systems. The language provides graphical representations for modeling
system requirements, behavior, structure, and parametric. As shown in the taxonomy of SysML diagrams7 in Fig. 1,
the language introduces two new diagrams to the existing set of UML diagrams that include the Parametric Diagram
and Requirements Diagram. The Internal Block Diagram, Block Definition Block Diagram, and the Activity
Diagram are modified to suit the system engineering domain. A key benefit to SysML is the ability to link the
various diagrams. This enables an explicit traceability of model elements that are expressed within the diagrams.
 The intent of the language is to provide a mechanism for realizing systems from a system engineering
perspective, as opposed to its UML counterpart, which focuses on software architecting. Moreover, SysML provides
a means by which system modeling may be captured within a MBSE approach without imposing a particular
methodology or tool. SysML enables language extensions that support these domains through the use of stereotypes
and profiles. A stereotype is a mechanism that allows the SysML language to be extended with additional concepts
of a specific domain, along with the constraints and properties of the domain. Profiles are special types of packages
that are used to group stereotypes. SysML provides additional extension capabilities, and the reader is referred to
Friedenthal et. al. for more detail on applying SysML in system development13. Due to broad acceptance as a
language for system engineering development, commercial vendors such as Sparx Systems14, IBM15, and No
Magic16 have created tools and toolkits that support SysML.

Figure 1. SysML diagram taxonomy7. This figure provides a taxonomy of the diagrams that may be applied
in SysML. SysML uses some diagrams from Unified Modeling Language (UML), and other diagrams are
introduced in SysML specifically to target system engineers.

American Institute of Aeronautics and Astronautics

4

B. Domain Specific Modeling
Domain specific modeling17 is a software engineering methodology for designing and developing systems within

a specific area of interest. A domain specific language (DSL) is a language that is used to model and develop
systems in a particular problem domain. A domain is a specific topic or area of concern to a set of stakeholders.
DSLs provide a set of abstract notations and a meaning to each notation, called the syntax and semantics,
respectively. DSLs are used to gain a better understanding and familiarity with modeling of applications in a specific
domain, and they simplify commonly used constructs of a domain. The intent is to reduce the effort to construct a
domain model by providing the domain expert with higher level constructs. This reduces the need to specify lower
level constructs that are needed for their definition. In addition, DSLs facilitate automated model transformations
since the mappings are based on language constructs. In the development of a DSL, domain experts provide the key
notations and vocabulary that guide their thought process about a particular problem within their domain. Thus, to
design a DSL, it is critical to have involvement from the domain experts; however, there is a consensus on some of
the challenges that characterize existing DSL approaches, including interoperability with other languages and tools,
formal semantics, and domain analysis18. Addressing these challenges is important for the successful adoption of a
DSL. For example, issues such as interoperability and formal semantics motivated the use of ontology languages,
such as the Web Ontology Language (OWL)19. To address these challenges, special attention is given to capturing
the underlying concepts in a domain.

C. Ontologies
An ontology is a representation of the concepts and the relations between concepts in a particular domain. As

pointed out by Wand et. al.20, to create a model in a domain, a set of concepts to describe the domain is needed.
This set of concepts includes the “things” and properties of those things that are of concern in a domain. The
properties may be intrinsic to the thing that it characterizes or it may be mutual to a set of things. The things of the
domain may also have relationships to one another, such as a type of association. The use of an ontology is for
describing the precise meaning of things. This is particularly useful in denotation languages that rely on the
constructs and rules that are defined for a domain to provide validation capabilities, such as the ability to check
assertions using computer-based methods. An ontology describes the concepts and their relations, but a formal
ontology may be constructed as a controlled vocabulary when it is expressed in an ontology representation language.

D. Metamodeling
A metamodel is an explicit representation of a domain’s constructs and rules, such as the allowed set of model

elements and their relation. A metamodel provides a specification for a domain specific model from which an
instance of a model may be constructed. It also specifies the components that may be used within a model instance.
An important aspect in the design of a DSL is a set of assertions on validity of a model that may be constructed
within that domain. A metamodel is one approach that enables the construction of the rules that govern a valid
model instance for a given domain. For example, it is likely necessary that a valid model in a domain must be fully
connected in that every element must be connected to every other element. In relation to an ontology, “a metamodel
is an ontology, but not all ontologies are modeled explicitly as metamodels”21.

E. Platform Based Design Methodology
SysML does not specify any particular methodology to implement a model based design. Therefore, in this work,

our design flow is based on concepts from the Platform-Based Design (PBD)22 methodology, which has been
successfully applied in the areas of consumer electronics and automotive systems23,24,25. The PBD methodology
provides an intellectual framework where a design flow that implements a specification, proceeds through a
sequence of refinement steps. An essential aspect of this framework is the separation of concerns26. For example, a
key concern is functionality versus architecture, where functionality is a description of what the designer intends to
implement, whereas the architecture expresses how the designer realizes the functionality.

A platform is a library of components that can be assembled to generate a design at that level of abstraction. A
platform instance is a valid composition of library elements that are characterized by their cost and performance
metrics. Each refinement step consists of selecting a platform instance that correctly implements a specification for
a specific level of abstraction. Thus, a design step can be formulated as design problem whose solution is an
instantiation of a platform instance that satisfies the specification. The methodology enables a systematic approach
for manual, semi-automatic or automatic mapping between successive abstraction layers. This view of the design
process is a generalization of a process that designers have used implicitly for years. For example, in the digital
logic synthesis process Boolean logic functions represent the functionality and the platform includes a library of
technology specific logic gates. The methodology not only applies to hardware design, but it has also been practiced

American Institute of Aeronautics and Astronautics

5

in the software community, particularly in the development of the application software stack where the Open
Systems Interconnection (OSI) Reference Model27 is an instance. As referenced in the literature, the key to this
methodology is the identification of appropriate abstraction layers.

V. Development of a Specification Language for Modeling Electrical System Architectures
In this section, we describe our approach to the development of a DSL for specifying electrical system

architectures in space flight systems using a MBSE approach. The approach extends a hierarchy of ontologies that
have been developed at the Jet Propulsion Laboratory (JPL) under the Integrated Model Centric Engineering
(IMCE) initiative, as shown in Fig. 2. A key objective of the IMCE initiative is to define a core set of ontologies that
may be applied in MBSE activities across SysML projects to establish a common semantic base. The key benefits of
this approach are to:

 standardize domain terminology,
 enable a common understanding of domain terminology,
 enable reuse of domain knowledge,
 make domain concepts and assumptions explicit,
 separate domain knowledge from operational knowledge,
 analyze domain knowledge, and
 reason about the semantics for each level in the hierarchy.

A. Identifying Domain Concepts
In this section, domain concepts from the perspective of the electrical system engineer are summarized. A key

responsibility of the electrical system engineer is to architect electrical interfaces. A simplified block diagram9 of an
electrical link model that features a pair of interfaces is illustrated in Fig. 3, where the transmit (TX) and receive
(RX) interfaces are the end points of the communication channel. The interfaces are further characterized by a given
behavior that may be represented as a high level set of functional blocks, such as those given in the figure. The
functional blocks may be further refined into a connection of electrical circuit components.

Figure 3. Electrical link model. An illustration of a data link 9. The link consists of a channel, a sender (TX),
interface, and a receiver (RX) interface. Interfaces are intermediate circuits between electrical subsystems or
components.

Figure 2. Ontological hierarchy. A conceptual hierarchy of ontologies that are leveraged in the development
of the electrical system ontology. The foundation ontologies, such as “Base”, “Mission”, and “Analysis” may be
extended to support specific disciplines, which may then be used to support application specific models, such as
the Mars Science Laboratory.

American Institute of Aeronautics and Astronautics

6

To capture domain concepts, it was necessary to obtain involvement from the electrical system engineers,
including conducting interviews and understanding the content of the artifacts that the engineers expect to produce,
such as block diagrams, tables, and reports. Our observations resulted in a set of concepts that are summarized into
several core concepts that are commonly used in the domain at different abstractions: components, interfaces,
channels, and signals. A list of these concepts along with a brief description of each concept is given in Table 1.
Each element may be characterized by a combination of properties, which may be quantified or used to further
classify based on the context for which the concepts are applicable. For example, a key concern is to identify the
difference between data and power interfaces since the behavior and quantitative properties of these types of
interfaces differ electrically, and they are often addressed throughout the design independently. Therefore, the
stereotypes in Fig. 4 may be extended to accommodate such extensions.

B. Denotational Semantics
 An electrical system model is an interconnection of components, interfaces, channels, and their characterizations.
A component is an element that performs a set of tasks, and it may produce and consume electrical signals. Each
component has at least one interface that is used as a point of interaction with other components. A pair of interfaces
is related by a channel. A channel is a logical path or physical medium that is used to transmit a signal. For example,
a component may contain an interface that is used to produce a data signal and transmit it over a channel to another
component with a compatible receiving interface that consumes a data signal. At different levels of abstraction,
components, interfaces, and channels may have different semantics. To distinguish between different types of
components, interfaces, and channels, each object may be characterized with a set of properties. For example, at the
highest level of abstraction, a component may be an instrument or power distribution subsystem where power flows
between subsystems over a logical power channel. At a lower level of abstraction, a component may be an
individual circuit board that receives power via a power converter interface circuit over a physical wire. In this
example, the signal is a characterization of the channel, and power is a characterization the interfaces.
 Formally, an electrical system model may be described by a labeled graph. Given a set of electrical components
(C), channels (J), and interfaces (I), the semantics of an electrical system model may be defined formally as a graph
GG , where is a set of nodes that is partitioned into two distinct sets such that ,
EE is a set of undirected edges, and is a function that labels nodes by a set of types, L.
Note that components are always adjacent to interfaces and interfaces are adjacent to channels. Thus, a connection is
defined as an ordered tuple for , and such that , , and

Table 1. Summary of key elements captured from domain knowledge. This table highlights the key
concepts from the electrical system architecture domain. The concepts are captured and summarized as a list of
core concepts along with the name of its stereotype for which the concept is mapped, the SysML notation used to
represent the syntax, and examples of the intended usage for each concept.

Concept Description Stereotype Name SysML Syntax Examples
Signal Represents discrete

messages and signal
flows

electrical.SignalFlow,
electrical.DataFlow

Item Flow Power flow, current flow,
command message,
telemetry message

Component Represent an element
that encapsulates
behaviors and emits
signals

electrical.Component Block Assembly, subsystem, end
circuit, electronic board

Interface A point of interaction
between two devices
where information or
power is transmitted over
logical channels, or media

electrical.Interface Port Universal Serial Bus (USB),
voltage regulator circuit,
Radio Frequency
transceiver, data port

Channel A logical path or physical
medium

electrical.interfaceJunction Connector (IBD) Air, wire, logical function
between interfaces

Property A type of characterization
that identifies or
quantifies an element

Stereotype tag property Block Properties
and Tag
Properites

Reference designator,
impedance, voltage

American Institute of Aeronautics and Astronautics

7

. A connection is acyclic, and for each connection, the set of adjacent vertices,
, where and . Intuitively, this means that a connection is a distinct path that is

composed of a sequence of components, interfaces, and channels where the endpoints of a channel are a pair of
interfaces. A labeling function assigns properties to nodes in G. A signal, s is a property that characterizes a channel,
i.e. for a labeling of channels . The labeling of nodes allows the user to specify different types of
interfaces, such as distinguishing power interfaces from data interfaces. This technique improves the flexibility of
assigning different types without altering the underlying structure of G. This results in a graph whose nodes may be
checked or queried based on the type of nodes. Furthermore, it enables the user to distinguish nodes between
abstraction levels.

C. Extending the System Modeling Language (SysML) with Domain Concepts
This step within the development of our DSL maps the domain semantics into SysML. As mentioned above,

SysML has mechanisms for extending its metamodel to support domain specific concepts. Domain concepts for the
electrical system architecture are encoded into a set of stereotypes that are packaged within a profile to enable reuse
amongst users. Instead of creating the domain stereotypes from scratch, they are derived from the hierarchy of
foundation ontologies by specifying specializations of the foundation ontologies that have been incorporated by the
IMCE team, as illustrated in Fig. 4. In the figure, the leaves represent specific stereotypes whose role is classified by
the abstraction level for which it is intended to be used. A set of mappings between the domain concepts and
stereotypes within SysML is summarized in Table 1.

D. Mapping Domain to Modeling Notations
Once the domain concepts are mapped into SysML via stereotypes, the stereotypes are associated to SysML

blocks to provide an abstract model notation, also referred to as the abstract syntax. A SysML block is chosen as the
abstract syntax because it is a general modeling concept in SysML that is used to model a variety of structural units,
such as objects with physical attributes, objects with a boundary, or abstract entities. Moreover, it may be used to
encapsulate other blocks, properties, stereotypes, or other modeling entities, as shown in Fig 5. In the figure, a set of
interfaces are used to illustrate the abstract syntax of electrical system interfaces. With an abstract syntax identified,
the stereotyped blocks may be applied to a model instance in any of the several diagrams that are provided by
SysML. In this work, we have primarily utilized Block Definition Diagrams to express hierarchical relations
between blocks, and we have utilized the Internal Block Diagram (IBD) extensively as the diagram of choice for
representing the interconnectivity between electrical interfaces, as illustrated in Fig. 6.

Figure 4. Application of stereotypes as a mechanism for extending SysML with electrical system domain
concepts. In this figure, the stereotypes that captures the core concepts of the electrical system domain are
shown. It highlights the specialization relationship that extends the foundation ontologies, which are also
encoded into SysML as a set of stereotypes.

American Institute of Aeronautics and Astronautics

8

 A SysML IBD is chosen to describe and represent the concrete syntax of specific electrical system architecture
views. A concrete syntax describes the appearance of the domain modeling elements as presented visually to the end
user. In this case, the IBD was a logical choice because within the domain, information and different views of that
information, are centered primarily on the structural, interconnection of blocks that are captured in block diagrams.
The notations within an IBD provide a natural way for the domain experts to construct and express their models.
Moreover, to support modeling varying levels of abstraction, abstract components and interfaces are refined by more
detailed model elements. For example, in Fig. 6, the Instrument Subsystem is a SysML block that is refined by SAR
Digital Electronics assembly, which is further refined by a set of boards. The ports are typed by data, telemetry, and
power interface. Item flows denote the type of signals that flow across the connector. Note that the assembly serves
as a placeholder until the information on its refinement is available. An illustration of an electrical system model is
illustrated in Fig. 6 where signals are represented by item flows, interfaces are represented by block ports, and
components are represented by blocks in the IBD.

Figure 5. Example set of electrical system interfaces. A sample set of interfaces that are captured in the
metamodel for electrical system modeling. The stereotypes that are applied to the blocks capture the semantics
and they are characterized by a set of properties. An example set of properties that are associated with a data

Figure 6. SysML Internal Block Diagram of an Electrical System Architecture Model. This figure is an
illustration of a specific type of view of an electrical system architecture block diagram. The diagram contains
several blocks that represent components, such as electronic boards, subsystems, and assemblies. It also features
electrical signals that are represented by the item flows and ports that represent the electrical interface types.

American Institute of Aeronautics and Astronautics

9

VI. Proposed Design Flow for Electrical System Architecture Design
In addition to managing large data sets, a key concern of the electrical system architecture domain is the ability to
capture a design from specification through physical implementation of electrical interfaces. The PBD methodology
is used to guide the design flow from specification to implementation of the electrical system architecture. Several
key abstraction levels are identified in our design flow, as illustrated in Fig. 7.

Within each level, there may be additional levels of refinement, but ideally, the difference in abstraction levels is
driven by a difference in communication semantics. It is observed that the levels of abstraction within the traditional
design process are driven by the documents. This results in abstraction levels that are not always semantically
correct with respect with one another. This could potentially result in ambiguous and inconsistent representations. In
contrast, the approach in this paper allows the engineer to construct the design as a model that is stored within a
central repository. The design model may be refined as design information becomes available, and at any point
within the design process, specific views of the system may be created or generated. Each view is constructed from a
set of rules that specify the elements and levels of detail that may be shown within that view. For example, at the
highest level of abstraction within the design flow, abstract communication and power channels are used for
message passing. In contrast to the lowest level of abstraction, wires are used as the medium for which current
flows. The interaction of these two types of signals is semantically different. Therefore, the levels that are captured
in Fig. 7 are to be representative of different semantics. We have intentionally separated these two concerns – the
design model and views of the design model. Therefore, we refer to the views to represent the different components
that may be referenced, or queried, by the domain expert as visual artifacts in the form of block diagrams, reports,
and tables. These views may be used in formal documentation procedures or as references to the current state of the
system design as the system is developed.

Figure 7. Electrical system abstraction levels. This figure illustrates the abstraction levels that are
identified in the proposed design flow. Each abstraction level is constructed by selecting an element from a
library of characterized model elements. The top two levels are captured completely within SysML. The
results of an Assembly Interface Level design is translated to a computer aided design (CAD) tool
automatically.

American Institute of Aeronautics and Astronautics

10

A. Abstraction Levels
The different levels of abstraction within our modeling environment include the Subsystem Interface Level,

Assembly Interface Level, and the Physical Pin Level. For adjacent levels of abstractions, the upper level provides a
specification to the lower level. At each level, a library of model elements that are characterized by a set of
quantities are selected to refine the elements of the upper level of abstraction. With appropriately defined levels of
abstraction, the designer can successively refine the design sytematically. Each level is described below.

1. Subsystem Interface Level
 At the highest level of abstraction for the electrical system platform, the subsystems that will be needed to
support the mission are identified and captured. It is assumed that a specification of the behavior has been
determined at the system level which is used to drive the hardware and software development. This aids the
electrical system engineer in estimating the general types of interfaces that will be needed to interface electronics
from the subsystems. For example, in Fig. 7, three subsystems are identified. Subsystems 1 and 2 will require a set
of power and data interfaces, and according to the illustration, the power subsystem will be the source of power to
the other subsystems. The general types of interfaces that will be needed by the subsystems then provides a
specification to the components that may be selected to realize the interface requirements of the Subsystem Interface
Level components.

2. Assembly Interface Level

This is the next level of refinement. It is a representation of the electronic assemblies and boards that may be
used to realize the subsystem components, and if the information about the specific types of interfaces is known,
then that information is also captured. For example, assume that Assembly 1 of Subsystem 1 is only capable of
receiving 7 Volts, and the Power Switch component in the Power Subsystem distributes 28 Volts. Then the power
interface to Assembly 1 will more than likely be used to convert 28 Volts down to 7 Volts. The circuitry that does
this conversion is the end circuit for Assembly 1. The signals at this level of abstraction may be assigned to an
interface function. An interface function is a logical signal that is assigned to the junction of a pair of interfaces.
Later in the design process, it is realized at the physical design level by a set of wires, connectors, and pins.

3. Physical Pin Level

This level of abstraction represents the lowest level of detail that is of concern to the electrical system engineer.
It is at this level that interface functions are realized by physical connections between electrical circuits. At this
level of abstraction, the components are end circuits that are realized by electrical circuit components, such as
resistors, capacitors, transformers, etc., and the junctions are wires. The interfaces are conductors, such as pins, that
connect wires between circuits. Connectors and cable harnesses may be assigned to elements in the physical design
model. To accommodate this part of the design flow that is carried out in a tool that is external to SysML, we
generate a list of interface functions that may be imported into the CAD tool.

B. Application to a Space Flight System
In this section, an example of a space flight system is briefly highlighted to demonstrate the applicability of our

approach to any existing space flight system. The example flight system is a moderately sized spacecraft that targets
an Earth observatory mission. The electrical system architecture is composed of approximately 100 electrical boards
and assemblies, and the electrical interfaces may be decomposed into approximately 700 interface functions. The
interface functions are a combination of data and power signals. Data signals may be further classified by their role
in a spacecraft as a command or telemetry data signal. An example set of interfaces and components that are
expressed in the application appears in Fig. 8. The example was constructed using No Magic’s MagicDraw with the
SysML plugin. To demonstrate applicability to a flight system, the framework we developed needed to be capable of
expressing each type of interface in the flight system.

In addition, the electrical system engineer must be able to capture all three abstraction levels with traceability
between each adjacent level of abstraction, and generate a set of existing documentation including block diagrams, a
list of interface functions that are deployed in the design, and a list of identification labels called reference
designators for each component. The abstraction levels provide a template for progressing the design. So, as the
design progresses, more detailed components, interfaces, and signals are added to refine the design. This is done
using encapsulation. However, encapsulation with SysML connectors is not intuitive. Thus, the connectors are
explicitly related by directed relationships that denotes a set of signals that refine a more abstract signal. The design
is captured and maintained within the design data repository of the tool, therefore traceability between any type of
view of the design model is always maintained within the system model. To produce the different views, we apply a

American Institute of Aeronautics and Astronautics

11

transformation that captures different views based on a set of user defined rules that determine which elements are
applicable within a particular view. By this method, we are able to separate the user defined views from the system
design model. As a result, the documentation and block diagram views were created from the design repository with
traceability back to the system model. Furthermore, we were able to provide a list of interface functions in a format
that may be imported into the commercial CAD tool for physical pin level design.

VII. Conclusion
In this paper, a model-centric approach to the specification and design of electrical system architectures for space

flight systems is introduced and described. A domain specific specification language is developed that allows
electrical system engineers to construct electrical system models. In addition, an outline of a design flow that is
guided by the principles of the Platform Based Design methodology is highlighted. The approach that is described in
this paper is applied to documents and diagrams that are commonly used to document the electrical system design
from a central repository. We were able to produce a set of documents and diagrams that are commonly used to
document the electrical system design of a practical space flight system as proof of concept.

Future work will refine our approach and focus our efforts on formalizing the design within the Platform Based
Design framework. In particular, we plan to capture electrical system requirements using SysML, and integrate
requirement models into our modeling environment. We also plan to add additional characterizations and properties
to our existing model elements. The model element library is planned to be expanded to cover pre-characterized sets
of hardware platforms to enable reuse.

Acknowledgments
This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract

with the National Aeronautics and Space Administration. The authors would like to thank Jose Gomez-Mustafa for
thoughtful discussions and initial work on developing application models using the method presented in this paper.
The authors acknowledge the assistance with advanced tool support from Nicolas Rouquette and feedback on this
work from Steven Jenkins.

References
1Wymore, A. W., A Mathematical Theory of Systems Engineering and Analysis, John Wiley and Sons, New York, 1967.
2Wymore, A. W., Model-Based Systems Engineering, CRC Press, Inc., Boca Raton, FL, 1993.
3Ogren, I., “On Principles for Model-Based Systems Engineering,” Systems Engineering, Vol. 3, No. 1, 2000, pp. 38-49.
4Estefan, J. A., “Survey of Model-Based Systems Engineering (MBSE) Methodologies”, Rev B., INCOSE MBSE Focus

Group, 2008.
5Harvey, D., Waite, M., Logan, P., and Liddy, T., “Document the Model, Don’t Model the Document,” SETE APCOSE

Conference, 2012.
6Metcalfe, R., “Packet Communication”, Massachusetts Institute of Technology (MIT) Project MAC Technical Report MAC

TR-114, Cambridge, MA, Dec. 1973.
7Object Management Group (OMG), “OMG Systems Modeling Language (OMG SysML): version 1.2”, OMG document

number formal/2010-06-02, URL: http://www.omg.org/docs/formal/08-11-02.pdf [cited 17 May 2012], 2008.
8Derler, P., Lee, E. A., and Sangiovanni-Vincentelli, A. L., “Addressing Modeling Challenges in Cyber-Physical Systems”,

Technical Report UCB/EECS-2011-17, EECS Department, University of California, Berkeley, CA, Mar. 2011.
9Stojanovic, V. and Horowitz, M., “Modeling and Analysis of High-Speed Links”, IEEE Custom Integrated Circuits

Conference, Sept. 2003, pp. 589-594.
10Slomka, F., Kollmann, S., Moser, S., and Kempf, K., “A Multidisciplinary Design Methodology for Cyber-physical

Systems”, MoDELS 2011 ADES-MB Workshop Proceedings, Oct. 2011, pp. 23-37.
11Shah, A. A., Schaefer, D., and Paredis, C. J. J., “Enabling Multi-View Modeling With SysML Profiles and Model

Transformations”, 6th International Product Lifecycle Management Conference (PLM09), Bath, U.K., 2009.
12Booch, G., Jacobson, I., and Rumbaugh, J., The Unified Modeling Language User Guide, Addison-Wesley, 1998.
13Friedenthal, S., Moore, A., and Steiner, R., A Practical Guide to SysML: Systems Modeling Language, Morgan Kaufmann,

San Francisco, CA, 2008.
14Sparx Enterprise Architect, Software Package, Ver. 9.3, Sparx Systems, Creswick, Victoria, Australia, Apr. 2012, URL:

http://www.sparxsystems.com.au/products [cited 17 May 2012].
15IBM Rational Rhapsody, Software Package, IBM, Armonk, New York, URL: http://www.sparxsystems.com.au/products

[cited 17 May 2012].
16MagicDraw SysML Plugin, Software Package, Ver. 17.0.1, No Magic, Allen, TX, 2012, URL: http://www.nomagic.com

[cited 17 May 2012].
17Tolvanen, J. P. and Kelly, S., “Defining Domain-Specific Modeling Languages to Automate Product Derivation: Collected

Experiences”, Lecture Notes in Computer Science, No. 3714, 2005, pp. 198-209.

American Institute of Aeronautics and Astronautics

12

18Gray, J., Fisher, K., Consel, C., Karsai, G., Mernik, M., and Tolvanen, J. P., “Panel – DSLs: The Good, The Bad, and The
Ugly”, Object Oriented Programming, System, Languages, and Applications (OOPSLA) Companion, New York, 2008.

19OWL 2 Web Ontology Language Overview, W3C Recommendation, URL: http://www.w3.org/TR/owl-features/ [cited 17
May 2012], Nov. 2009.

20Wand, Y., Monarchi, D. E., Parson, J., and Woo, C. C., “Theoretical Foundations for Conceptual Modelling in Information
Systems,” Decision Support Systems Journal – Special Issue on WITS, Vol. 15, No. 4, 1995, pp. 285-304.

21Gonzalez-Perez, C. and Henderson-Seller, B., Metamodelling for Software Engineering. Chichester (UK), Wiley and Sons,
2008.

22Sangiovanni-Vincentelli, A. L., Carloni, L., De Bernardinis, F., and Sgroi, M., “Benefits and Challenges for Platform-Based
Design”, Proceedings of the Design Automation Conference (DAC), San Diego, CA, June 2004.

23Carloni, L., Bernardinis, F. D., Pinello, C., Sangiovanni-Vincentelli, A. L., and Sgroi, M., “Platform-Based Design for
Embedded Systems”, The Embedded Systems Handbook, CRC Press, 2005.

24Davare, A., Zhu, Q., Moondanos, J., and Sangiovanni-Vincentelli, A. L., “JPEG Encoding on the Intel MXP5800: A
Platform-Based Design Case Study”, ESTIMedia 2005: 3rd Workshop on Embedded Systems for Real-time Multimedia, Sept.
2005, pp. 89-94.

25Zeng, H., Davare, A., Sangiovanni-Vincentelli, A. L., Sonalkar, S., Kanajan, S., and Pinello, C., "Design Space Exploration
of Automotive Platforms in Metropolis", Society of Automotive Engineers World Congress, April, 2006.

26Keutzer, K., Malik, S., Newton, A. R., Rabaey, J. M., and Sangiovanni-Vincentelli, A. L., “System-Level Design:
Orthogonalization of Concerns and Platform-Based Design”, IEEE Transactions on Computer Aided Design of Integrated
Circuits and Systems, Vol. 19, No. 12, 2000, pp. 1523-1543.

27Zimmermann, H., “OSI Reference Model”, IEEE Transactions on Communications, Vol. 28, No. 4, Apr. 1980, p. 425.

